Primitive root modulo n

From testwiki
Jump to navigation Jump to search

In modular arithmetic, a number g is a primitive root modulo n, if every number m from 1..(n-1) can be expressed in the form of gxm(modn). As an example, 3 is a primitive root modulo 7:

313 (mod7)
322 (mod7)
336 (mod7)
344 (mod7)
355 (mod7)
361 (mod7)

All the elements 1,2,,6 of the group modulo 7 can be expressed that way. The number 2 is no primitive root modulo 7, because

23=81(mod7)

and

26=641(mod7)

Template:Math-stub