List of series

From testwiki
Jump to navigation Jump to search

Template:Orphan This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums.

Sums of powers

  • i=1ni=n(n+1)2
    See also triangle number. This is one of the most useful series: many applications can be found throughout mathematics.
  • i=1ni2=n(n+1)(2n+1)6=n33+n22+n6
  • i=1ni3=[n(n+1)2]2=n44+n32+n24=(i=1ni)2
  • i=1ni4=n(n+1)(2n+1)(3n2+3n1)30=6n5+15n4+10n3n30
  • i=0nis=(n+1)s+1s+1+k=1sBksk+1(sk)(n+1)sk+1
    Where Bk is the kth Bernoulli number, B1 is negative and (sk) is the binomial coefficient (choose function).
  • i=1is=p prime11ps=ζ(s)
Where ζ(s) is the Riemann zeta function.

Power series

Infinite sum (for |x|<1) Finite sum
i=0xi=11x i=0nxi=1xn+11x=1+1r(11(1+r)n) where r>0 and x=11+r.
i=0x2i=11x2
i=1ixi=x(1x)2 i=1nixi=x1xn(1x)2nxn+11x
i=1i2xi=x(1+x)(1x)3 i=1ni2xi=x(1+x(n+1)2xn+(2n2+2n1)xn+1n2xn+2)(1x)3
i=1i3xi=x(1+4x+x2)(1x)4
i=1i4xi=x(1+x)(1+10x+x2)(1x)5
i=1ikxi=Lik(x), where Lis(x) is the polylogarithm of x.

Simple denominators

  • n=1xnn=loge(11x) for |x|<1
  • n=0(1)n2n+1x2n+1=xx33+x55=arctan(x)
  • n=0x2n+12n+1=arctanh(x) for |x|<1
  • n=11n2=π26
  • n=11n4=π490
  • n=1yn2+y2=12y+π2coth(πy)

Factorial denominators

Many power series which arise from Taylor's theorem have a coefficient containing a factorial.

  • i=0xii!=ex
  • i=0ixii!=xex (c.f. mean of Poisson distribution)
  • i=0i2xii!=(x+x2)ex (c.f. second moment of Poisson distribution)
  • i=0i3xii!=(x+3x2+x3)ex
  • i=0i4xii!=(x+7x2+6x3+x4)ex
  • i=0(1)i(2i+1)!x2i+1=xx33!+x55!=sinx
  • i=0(1)i(2i)!x2i=1x22!+x44!=cosx
  • i=0x2i+1(2i+1)!=sinhx
  • i=0x2i(2i)!=coshx

Modified-factorial denominators

  • n=0(2n)!4n(n!)2(2n+1)x2n+1=arcsinx for |x|<1
  • i=0(1)i(2i)!4i(i!)2(2i+1)x2i+1=arcsinh(x) for |x|<1

Binomial series

Geometric series:

  • (1+x)1={i=0(x)i|x|<1i=1(x)i|x|>1

Binomial Theorem:

  • (a+x)n={i=0(ni)anixi|x|<|a|i=0(ni)aixni|x|>|a|
  • (1+x)α=i=0(αi)xi for all |x|<1 and all complex α
with generalized binomial coefficients
(αn)=k=1nαk+1k=α(α1)(αn+1)n!

Square root:

  • 1+x=i=0(1)i(2i)!(12i)i!24ixi for |x|<1

Miscellaneous:

  • [1] i=0(i+ni)xi=1(1x)n+1
  • [1] i=01i+1(2ii)xi=12x(114x)
  • [1] i=0(2ii)xi=114x
  • [1] i=0(2i+ni)xi=114x(114x2x)n

Binomial coefficients

  • i=0n(ni)=2n
  • i=0n(ni)a(ni)bi=(a+b)n
  • i=0n(1)i(ni)=0
  • i=0n(ik)=(n+1k+1)
  • i=0n(k+ii)=(k+n+1n)
  • i=0r(ri)(sni)=(r+sn)

Trigonometric functions

Sums of sines and cosines arise in Fourier series.

  • i=1nsin(iπn)=0
  • i=1ncos(iπn)=0

Unclassified

  • n=b+1bn2b2=n=12b12n

Notes

References