Highly composite number

From testwiki
Jump to navigation Jump to search


A highly composite number in math (also called anti-prime) is a real number with more divisors than any real number smaller than it.

Jean-Pierre Kahane thought that Plato might have known about highly composite numbers. This is because he chose 5040 as a good number of citizens in a city as 5040 has more divisors than any numbers less than it.[1][2]

Examples

The first 38 highly composite numbers are listed in the table below Template:OEIS. The number of divisors is given in the column labeled d(n). The letters with asterisks are also superior highly composite numbers.

Order HCN
n
prime
factorization
prime
exponents
number
of prime
factors
Template:Abbr primorial
factorization
1 1 0 1
2 2* 2 1 1 2 2
3 4 22 2 2 3 22
4 6* 23 1,1 2 4 6
5 12* 223 2,1 3 6 26
6 24 233 3,1 4 8 226
7 36 2232 2,2 4 9 62
8 48 243 4,1 5 10 236
9 60* 2235 2,1,1 4 12 230
10 120* 2335 3,1,1 5 16 2230
11 180 22325 2,2,1 5 18 630
12 240 2435 4,1,1 6 20 2330
13 360* 23325 3,2,1 6 24 2630
14 720 24325 4,2,1 7 30 22630
15 840 23357 3,1,1,1 6 32 22210
16 1260 223257 2,2,1,1 6 36 6210
17 1680 24357 4,1,1,1 7 40 23210
18 2520* 233257 3,2,1,1 7 48 26210
19 5040* 243257 4,2,1,1 8 60 226210
20 7560 233357 3,3,1,1 8 64 62210
21 10080 253257 5,2,1,1 9 72 236210
22 15120 243357 4,3,1,1 9 80 262210
23 20160 263257 6,2,1,1 10 84 246210
24 25200 2432527 4,2,2,1 9 90 2230210
25 27720 23325711 3,2,1,1,1 8 96 262310
26 45360 243457 4,4,1,1 10 100 63210
27 50400 2532527 5,2,2,1 10 108 2330210
28 55440* 24325711 4,2,1,1,1 9 120 2262310
29 83160 23335711 3,3,1,1,1 9 128 622310
30 110880 25325711 5,2,1,1,1 10 144 2362310
31 166320 24335711 4,3,1,1,1 10 160 2622310
32 221760 26325711 6,2,1,1,1 11 168 2462310
33 277200 243252711 4,2,2,1,1 10 180 22302310
34 332640 25335711 5,3,1,1,1 11 192 22622310
35 498960 24345711 4,4,1,1,1 11 200 632310
36 554400 253252711 5,2,2,1,1 11 216 23302310
37 665280 26335711 6,3,1,1,1 12 224 23622310
38 720720* 2432571113 4,2,1,1,1,1 10 240 22630030

The divisor of the first 15 highly composite numbers are shown below.

n Template:Abbr Divisors of n
1 1 1
2 2 1, 2
4 3 1, 2, 4
6 4 1, 2, 3, 6
12 6 1, 2, 3, 4, 6, 12
24 8 1, 2, 3, 4, 6, 8, 12, 24
36 9 1, 2, 3, 4, 6, 9, 12, 18, 36
48 10 1, 2, 3, 4, 6, 8, 12, 16, 24, 48
60 12 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
120 16 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120
180 18 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180
240 20 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240
360 24 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360
720 30 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720
840 32 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840

The table below shows all 72 divisors of 10080 by writing it as a product of two numbers in 36 different ways.

The highly composite number: 10080
10080 = (2 × 2 × 2 × 2 × 2)  ×  (3 × 3)  ×  5  ×  7
1
×
10080
2
×
5040
3
×
3360
4
×
2520
5
×
2016
6
×
1680
7
×
1440
8
×
1260
9
×
1120
10
×
1008
12
×
840
14
×
720
15
×
672
16
×
630
18
×
560
20
×
504
21
×
480
24
×
420
28
×
360
30
×
336
32
×
315
35
×
288
36
×
280
40
×
252
42
×
240
45
×
224
48
×
210
56
×
180
60
×
168
63
×
160
70
×
144
72
×
140
80
×
126
84
×
120
90
×
112
96
×
105
Note:  The numbers in bold are also highly composite numbers. 10080 is often referred to as a 7-smooth number Template:OEIS.

[3]

Similar sequences

Every highly composite number that is bigger than 6 is also an abundant number. Not all highly composite numbers are also Harshad numbers, however most of them are the same. The first highly composite number that is not a Harshad number is 245,044,800. This number's digit's sum is 27. 27, however, doesn't divide into 245,044,800 evenly.

10 of the first 38 highly composite numbers are also superior highly composite numbers.[4][5]

Notes

Template:Reflist

References

Other websites

Template:Divisor classes Template:Classes of natural numbers

  1. Template:Citation. Kahane cites Plato's Laws, 771c.
  2. Template:Cite journal
  3. Template:Citation.
  4. Sándor et al. (2006) p. 46
  5. Template:Cite journal