Repunit

From testwiki
Revision as of 10:24, 11 November 2023 by imported>InternetArchiveBot (Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

A repunit is a number like 11, 111, or 1111. It only has the digit 1 in it. It is a more specific type of repdigit. The term stands for repeated unit and was coined in 1966 by Albert H. Beiler in his book Recreations in the Theory of Numbers.Template:Refn

A repunit prime is a repunit that is also a prime number. Primes that are repunits in base-2 are Mersenne primes.

Definition

The base-b repunits can be written as this where b is the base and n is the number that you are checking in whether or not it is a repunit:

Rn(b)1+b+b2++bn1=bn1b1for |b|2,n1.

This means that the number Rn(b) is made of of of n copies of the digit 1 in base-b representation. The first two repunits base-b for n = 1 and n = 2 are

R1(b)=b1b1=1andR2(b)=b21b1=b+1for |b|2.

The first of repunits in base-10 are with

1, 11, 111, 1111, 11111, 111111, ... Template:OEIS.

Base-2 repunits are also Mersenne numbers Mn = 2n − 1. They start with

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, ... Template:OEIS.

Factorization of decimal repunits

Prime factors that are Template:Color are "new factors" that haven't been mentioned before. Basically, the prime factor divides Rn but does not divide Rk for all k < n. Template:OEIS[1]

R1 = 1
R2 = Template:Color
R3 = Template:Color · Template:Color
R4 = 11 · Template:Color
R5 = Template:Color · Template:Color
R6 = 3 · Template:Color · 11 · Template:Color · 37
R7 = Template:Color · Template:Color
R8 = 11 · Template:Color · 101 · Template:Color
R9 = 32 · 37 · Template:Color
R10 = 11 · 41 · 271 · Template:Color
R11 = Template:Color · Template:Color
R12 = 3 · 7 · 11 · 13 · 37 · 101 · Template:Color
R13 = Template:Color · Template:Color · Template:Color
R14 = 11 · 239 · 4649 · Template:Color
R15 = 3 · Template:Color · 37 · 41 · 271 · Template:Color
R16 = 11 · Template:Color · 73 · 101 · 137 · Template:Color
R17 = Template:Color · Template:Color
R18 = 32 · 7 · 11 · 13 · Template:Color · 37 · Template:Color · 333667
R19 = Template:Color
R20 = 11 · 41 · 101 · 271 · Template:Color · 9091 · Template:Color
R21 = 3 · 37 · Template:Color · 239 · Template:Color · 4649 · Template:Color
R22 = 112 · Template:Color · Template:Color · Template:Color · 21649 · 513239
R23 = Template:Color
R24 = 3 · 7 · 11 · 13 · 37 · 73 · 101 · 137 · 9901 · Template:Color
R25 = 41 · 271 · Template:Color · Template:Color · Template:Color
R26 = 11 · 53 · 79 · Template:Color · 265371653 · Template:Color
R27 = 33 · 37 · Template:Color · 333667 · Template:Color
R28 = 11 · Template:Color · 101 · 239 · Template:Color · 4649 · 909091 · Template:Color
R29 = Template:Color · Template:Color · Template:Color · Template:Color · Template:Color
R30 = 3 · 7 · 11 · 13 · 31 · 37 · 41 · Template:Color · Template:Color · 271 · Template:Color · 9091 · 2906161

The smallest prime factors of Rn for n > 1 are

11, 3, 11, 41, 3, 239, 11, 3, 11, 21649, 3, 53, 11, 3, 11, 2071723, 3, 1111111111111111111, 11, 3, 11, 11111111111111111111111, 3, 41, 11, 3, 11, 3191, 3, 2791, 11, 3, 11, 41, 3, 2028119, 11, 3, 11, 83, 3, 173, 11, 3, 11, 35121409, 3, 239, 11, ... Template:OEIS

Footnotes

Notes

Template:Reflist

References

Template:Reflist

Further reading

Other websites

Template:Classes of natural numbers

  1. For more information, see Factorization of repunit numbers.