Isomorphism: Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Lights and freedom
 
(No difference)

Latest revision as of 07:37, 9 June 2022

In mathematics (particularly in abstract algebra), two mathematical structures are isomorphic when they are the same in some sense. More specifically, an isomorphism is a function between two structures that preserves the relationships between the parts. To indicate isomorphism between two structures 𝒜 and , one often writes 𝒜.[1][2]

Using the language of category theory, this means that morphisms map to morphisms without breaking composition. An isomorphism is also a homomorphism that is one-to-one.[3]

As an example, one can consider the operation of adding integers Z. The doubling function φ(x) = 2x maps elements of Z to elements of the even integers 2Z. Since φ(a+b) = 2(a+b) = 2a+2b = φ(a)+φ(b), adding in Z is structurally identical as adding in 2Z (which makes this an example of isomorphism).

References

Template:Math-stub